A Tetradic Decomposition of 4 Th - Order Tensors . Application to the Source Separation Problem

نویسنده

  • COIS CARDOSO
چکیده

Two results are presented on a SVD-like decomposition of 4th-order tensors. This is motivated by an array processing problem: consider an array of m sensors listening at n independent narrow band sources; the 4th-order cumulants of the array output form a 4th-order rank-deecient symmetric tensor which has a tetradic structure. Finding a tetradic decomposition of this tensor is equivalent to identify the spatial transfert function of the system which is a matrix whose knowledge allows to recover the source signals. We rst show that when a 4th-order tensor is a sum of independant tetrads, this tetradic structure is essentially unique. This is to be contrasted with the second order case, where it is weel known that dyadic decompositions are not unique unless some constraints are put on the dyads (like orthogonality, for instance). Hence this rst result is equivalent to an identiiability property. Our second result is that (under a `locality' condition), symmetric and rank-n 4th-order tensors necessarily are a sum of n tetrads. This result is needed because the sample cumu-lant tensor being only an approximation to the true cumulant tensor, is not exactly a sum of tetrads. Our result implies that the sample cumulants can bèenhanced' to the closest tetradic cumulants by alternatively forcing their rank-deeciency and symmetry. A simple algorithm is described to this eeect. Its output is an enhanced statistic, from which blind identiication is obtained deterministically. This leads to a source separation algorithm based only on the 4th-order cumulants, which is equivalent to robust statistic matching without the need for an explicit optimization procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Separation of Jointly Stationary Correlated Sources

The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...

متن کامل

Completely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations

The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more...

متن کامل

Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition

Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model which represents data as an ordered network of sub-tensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network decomposition has been long st...

متن کامل

Non-orthogonal tensor diagonalization

Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...

متن کامل

Canonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations

Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the inten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995